$$\frac{\S4. \quad Compactification \ on \ general}{\underline{3-manifolds}}$$

$$\frac{\S4.1 \ A-model \ labeled \ by \ 3-manifolds: T^{4}[M_{5}]}{A \ general \ 3d \ M=2 \ admits \ partial \ top. twist \ on \ S'_{\times} \Sigma :$$

$$SO(2)_{\Sigma}^{\prime} \subset SO(2)_{\Sigma} \times U(i)_{\ell}$$
where $U(i)_{\ell}$ is $R-sym. \ of \ 3d \ M=2 \ 1h.$

$$\int S^{1} \ 2d \ M=(2,2) \ in \ 2d:$$

$$\cdot right-maxing \ supercharges: \ Q_{\ell}, \ \overline{Q}_{\ell}$$

$$\cdot left-maxing \ supercharges: \ Q_{\ell}, \ \overline{Q}_{\ell}$$

• two top twists:
A-twist: Q, Q, have zero spin
B-twist: Q, Q, have zero spin
B-twist: Q, Q, tQ, have zero spin
BRST-op:
Q =
$$\{Q_{-} + Q_{+} (A-twist)\}$$

 $Q = \{Q_{-} + Q_{+} (B-twist)\}$
 \Rightarrow elements of Q - cohomology
form a ring Q:
A-twist : (Q, C) - ring
anti-chiral chiral
 $R = H^{*}(X)$, (Q, Q, H)~(d, d, A)
target space
of sigma model
One of the basic ingredients in U=G,2)
2d theories is a free chiral superfield
 $\Phi = \phi + O^{1}A_{+} + O^{-}A_{+} + \cdots$
 $\frac{U(I)Z}{V_{+}} \frac{U(I)V}{V_{+}} \frac{U(I)A_{-}}{N} \frac{n=0}{V_{+}}$
 $\frac{V_{+}}{V_{+}} = 1 - 1 + 1 - 1$
 $\frac{V_{+}}{V_{+}} = 1 - 1 - 1$

A-twist replaces
$$U(1)_{\Sigma}$$
-charge by sum
of $U(1)_{\Sigma}$ and $U(1)_{V}$ -charges
 $\xrightarrow{m=0} \phi, \psi, \psi, \overline{\psi}$ become scalars
 $\rightarrow observables O \in H^{P,q}(X)$ correspond
to R-charges $(m,n)=(q,p,q+p)$
 $U(1)_{V} (=U(1)_{L})$ allows to define
"graded" Q-cohomology:
 $H(\Sigma) = Z$ -graded Q-cchomology
 $X(H(\Sigma)) = Z_{A-model}(\Sigma)$
refined A-model partition function:
 $\dim_{L} H(\Sigma) = \sum_{j} t^{j} \dim_{M} H^{j}(\Sigma)$
The top. A-model is 2d TQFT
 $\rightarrow described$ by Frobenius algebra:
 $\eta_{ij} = \langle \phi_{i} \phi_{j} \rangle_{Z} = \langle i | j \rangle, \phi_{i} | j \rangle = C_{ij}^{\kappa} | k \rangle$
 $T^{ij} T_{j\kappa} = S^{i}_{\kappa}, C_{ij\kappa} = \langle \phi_{i} \phi_{j} \phi_{\kappa} \rangle_{S} = \langle i | \phi_{j} | k \rangle$
 $= \eta_{ie} C_{i\kappa}^{j}, \phi_{i} \in R$

The (a,c)-ring is given by $\mathcal{X} = \mathbb{C}[\mathcal{Z}]/(\mathcal{Z}^{P}-1) \cong \mathbb{C}[\mathbb{Z}_{P}] \quad (*)$ where Zzeo and the condition 2P-1=0 arises from: $\exp\left(\frac{\partial \tilde{W}}{\partial \sigma}\right) = l \left(\frac{\partial \omega}{\partial \sigma}\right) = l \left(\frac{\partial \omega}{\partial \sigma}\right)$ 2d theory) The elements (*) are lifted to anyonic Wilson lines in 3d U(1), bosonic CS-theory and the multiplication in Ragrees with the fusion rules General Mz: reduction of the Gd (20) - th can then be viewed as 6d (20)-th on ExS'x M3 2d A-modél on Z with target Meat (Ge, Mz) = 4d DW top. Wist of $T_G[\Sigma] \sim M_3$

We have

$$\mathcal{R} \equiv \mathcal{H}_{TA}[M_{3}]_{G}(S') \cong H^{*}(\mathcal{M}_{plat}(G_{c}, M_{3}))$$

In many examples, $\mathcal{M}_{plat}(G_{c}, M_{3})$ will
be simply a discrete set (i.e. for lens
spaces). In such a case,
 $\mathcal{H}_{TA}[M_{3}](S') = \mathbb{C}[\mathcal{M}_{plat}(G_{c}, M_{3})]$
equipped with a chiral ring structure:
 $\sum_{i=1}^{n} \mathbb{C}[\mathcal{M}_{plat}(G_{c}, M_{3})] \times \mathbb{C}[\mathcal{M}_{plat}(G_{c}, M_{3})]$
 $\stackrel{\sim}{\longrightarrow} \mathbb{C}[\mathcal{M}_{plat}(G_{c}, M_{3})] \times \mathbb{C}[\mathcal{M}_{plat}(G_{c}, M_{3})]$

We have

$$\mathcal{H}_{T^{A}[M_{3}]}(S') = \mathcal{H}_{T[M_{3}]}(T^{2})$$
 (i)
Since T^{λ} has mapping class group
 $SL(2, \mathbb{Z})$, it follows that (i) should
be a (projective) representation of $SL(2, \mathbb{Z})$,
 $\mathcal{R} : SL(2, \mathbb{Z}) \rightarrow End(\mathcal{H}_{T^{A}[M_{5}]}(S'))$
(2)

First, let us assume that the fundamental group TT, (M3) is finite and Melat (G. M3) = Melat (G, Mz) Consider the case G=U(1) and set H=H,(143) $\rightarrow \mathcal{M}_{\text{plat}}(\mathcal{U}(\mathcal{I}), \mathcal{M}_{s}) \cong \mathcal{H}_{\text{om}}(\mathcal{H}, \mathcal{U}(\mathcal{I})) =: \mathcal{F}_{1}$ where fi is the Pontryagin dual of H $\rightarrow \mathcal{H}_{T^{A}[M_{3}]}(S') = \mathbb{C}[\hat{H}] = \mathbb{C}[H]$ Introducing a line operator labelled by h e H along a non-trivial cycle of the solid torus creates a state in $2 - (TA_{[M_{2}]}(S') = C[H]:$

Yet us now construct the representation
of SL(1,Z):
Consider any 4-manifold My such that
$$\partial M_{4} = M_{3}$$

with My ~ M_{3} × R near the boundary
Consider 6d Ord)-th an My × T² with
top twist (to be explained later)
 \rightarrow "Vafa-Witten"-TQFT in 401
 $M_{4} = M_{3}$
 $\rightarrow Vafa-Witten"-TQFT in 401 $M_{4} = M_{3}$
 $\rightarrow Vafa-Witten"-TQFT in 401 $M_{4} = M_{3}$
 $M_{5} = M_{73}$
 $\rightarrow Z_{VW}(M_{4})(\tau) \in H_{VW}(M_{3})$
modular
parameter of torus
and $H_{VW}(M_{3}) = H_{T[M_{3} \times T^{2}]} = H_{T[M_{3}]}(T^{2})$
 $SL(2,Z)-action: $Z_{VW}(M_{4})(\frac{a\tau+b}{c\tau+d})$
 $= C(\tau,a,b,c,d)R_{cd}^{ab}] Z_{VW}(M_{4})(\tau)$$$$

The natural boundary condition for

$$VW$$
 theory on M_{4} requires gauge con.
to approach a flat one at boundary
 $\longrightarrow Z_{VW}(M_{4})_{p}(t), p \in M_{flat}(G,M_{5})$
Moreover, we have, defining $q = e^{2\pi i t}$,
 $Z_{VW}(M_{4})_{p}(t) = \sum_{n} q^{n} \chi(\mathcal{M}_{n,p})$
where n is the instanton number